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Spatial and temporal frequency dynamics were experimentally tracked via flow
visualization for Newtonian fluids as a function of the inner cylinder Reynolds
number (Rei) in the flow between concentric, independently rotating cylinders with a
radius ratio of 0.912 and an aspect ratio of 60.7. Eight transitions from laminar to
turbulent flow were characterized in detail for a stationary outer cylinder, producing
highly resolved space–time and frequency–time plots for wavy, modulated and weakly
turbulent states. A previously unreported early-modulated wavy vortex flow was
found in our high aspect ratio geometry both with and without the presence of a
dislocation. The envelope of stability for this flow state was shown to cross into the
co-rotating regime, and is present up to Reo ∼ 60, where Reo is the outer cylinder
Reynolds number. This early modulation is independent of acceleration in the range
0.18 < dRei/dτ < 2.9, where τ is the time nondimensionalized with a viscous time
scale. While many of the flow states have been previously observed in geometries
with somewhat different radius ratios, we provide new characterization of transitional
structures for Reo = 0 in the range 0 < Re∗ < 21.4, where Re∗ =Rei/Rec and Rec is
the value of Rei at the primary instability. Special attention has been given to ramp
rate. For quasi-static ramps, axisymmetric states are stable over the ranges of Re∗ =
[(0–1.17), > 15.4], states characterized by a single distinct temporal frequency for
Re∗ = [(1.17–1.41), (3.56–5.20), (7.85–15.4)], states with multiple temporal frequencies
for Re∗ =[(1.41–3.56), (5.20–7.85)], and a transition from laminar to weakly turbulent
vortices occurs at Re∗ = 5.49. All flow states are characterized by symmetry/symmetry-
breaking features as well as azimuthal and axial wavenumbers.
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1. Introduction
Taylor–Couette (T-C) flow, or flow between two concentric, rotating cylinders, has

long been an interesting and challenging problem due to its rich nonlinear dynamics.
As the angular velocities of the inner and outer cylinders are varied, many flow
states, separating unidirectional shear flow and fully developed turbulent flow, can
be accessed. Consequently, significant insight into flow properties and dynamics has
been gained from this unique geometry. The T-C geometry is parameterized by a
radius ratio η = Ri/Ro, where Ri and Ro are the radii of the inner and outer cylinders,
respectively, and an aspect ratio Γ = h/d, where h is the cylinder height and d is the
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gap, d =Ro −Ri . In the present study, η =0.912 and Γ = 60.7. Reynolds numbers Rei

and Reo based on the radii and the angular velocities Ωi and Ωo of the inner and
outer cylinders, respectively, are defined here as Rei = ΩidRi/ν and Reo = ΩodRo/ν,
where ν is the kinematic viscosity. The primary transition from Couette flow occurs
at Rec, the critical Reynolds number based on Rei , and depends on η and Reo. For
the present work, Rec(η = 0.912, Reo = 0) = 140.2, as given by linear stability theory.
Higher order critical conditions are cast in terms of Re∗ =Rei/Rec(η, Reo).

For experiments where Reo =0, flow states found when increasing Rei , include
Taylor vortex flow (TVF), wavy vortex flow (WVF) and modulated wavy vortex
flow (MWV). TVF is a flow pattern of time-independent, axisymmetric, toroidal
vortices characterized by a single axial wavenumber. WVF consists of time-dependent,
non-axisymmetric vortices characterized by a single axial wavenumber and a single
azimuthal wavenumber. MWV, characterized in detail by Gorman and Swinney
(1982), involves non-axisymmetric vortices described by two temporal frequencies. As
Rei is further increased, a ‘chaotic’ transition occurs at the onset of non-periodic
small-scale spatial structure and a smoothly decaying spectral profile, while the large
scale, axially periodic structure remains (see e.g. Brandstater and Swinney 1987).
Flow states after this transition are sometimes referred to as ‘post-chaotic’ or ‘weakly
turbulent’ flows. Based on spectral analysis, these weakly turbulent states, defined in
terms of their coherent structure, are subdivided into three flow states. The first is
chaotic wavy vortex flow (CWV; the notation of CWV is from Takeda 1999, and is
applied less broadly here), which contains multiple dominant temporal frequencies.
The second and third post-chaotic flows are wavy turbulent vortex flow (WTV) and
turbulent Taylor vortex flow (TTV) with coherent structures that are characterized by
one and zero distinct temporal frequencies, respectively. Subsequent transitions are
not explored in this paper.

Over the past 85 years there has been extensive experimental work on the Newtonian
Taylor–Couette problem (including seminal work by Taylor 1923, Coles 1965 and
Andereck, Liu & Swinney 1986; recent reviews include those by Koschmieder 1993,
Tagg 1994 and Abshagen, Schulz and Pfister 1996). Collectively, the experimental
studies have covered a large parameter space, including varying radius ratio η, aspect
ratio Γ , rotation ratio Ωo/Ωi = ηReo/Rei and ramp rate dRei/dτ , where τ is time
made dimensionless with the viscous time scale d2/ν. However, due to the vastness
of the parameter space, a complete set of parameter permutations has not yet been
realized and much of the parameter space remains undercharacterized. In this paper,
we offer detailed experimental results for our geometry of lower- and higher-order
transitions to fill in some of the gaps in the Reo = 0 and Reo > 0 regimes. Here, we
briefly discuss the effects of varying η and Γ as reported in the literature, focusing
on Reo = 0 except where noted. The discussion on the effects of Reo and dRei/dτ is
postponed until the end of this introduction and § 2.2, respectively.

Radius ratio dictates the relative range of streamline curvature experienced by
the fluid. The non-monotonic effect of η on the first transition (TVF) has long
been understood and approximate expressions for Rec(η) are available (cf. Esser &
Grossmann 1996; Dutcher & Muller 2007). The effect of η on the second-order
transition (WVF), a Hopf bifurcation, is also known: DiPrima, Eagles & Ng (1984)
compiled experimental data for Rec WVF (η, Reo = 0) and showed that as η → 1,
WVF was stabilized (whereas TVF is destabilized). However, as Rei increases, even
with Reo = 0, critical conditions and characterization data for post-WVF flow states
are extremely limited (e.g. von Stamm et al. 1996; Meincke and Egbers 1999), and
generalizations on the effect of η on these higher order transitions are not readily
available.
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A major difficulty in establishing a generic sequence of transitions to turbulence
for ‘narrow’ or ‘wide’ gap geometries is the sensitivity of higher order transitions to
aspect ratio. Walden and Donnelly (1979), with Reo = 0, η = 0.876 and 18 < Γ < 80,
showed that the critical conditions for the transitions to turbulence are dependent
on aspect ratio. Cole (1976) examined WVF critical conditions as a function of Γ

and found that for short cylinders (Γ < 20), the end walls suppress the formation of
WVF, due to the Ekman layers (Czarny et al. 2004). Mullin (1985) also reported a
significant change, especially for wide gap systems, in both the critical condition for
WVF and the azimuthal mode number as Γ was varied from 13 to 32.

While end effects notably impact geometries with small aspect ratios, geometries
with large aspect ratios are indelibly marked by mode or flow type competition. As
noted by Abshagen, Pfister and Mullin (2001) regarding the comprehensive set of
experiments preformed for η =0.5 (von Stamm et al. 1996; Abshagen et al. 2001,
2005), the rationale behind the choice of a small aspect ratio of Γ ∼ 3–4 was to limit
the degree of mode competition. Benjamin and Mullin (1982) indicate that for large
aspect ratios, the ‘high multiplicity’ of solutions is significant. They found that even
for Γ =12.6, fifteen different flows could be produced under identical conditions of
η =0.6, Rei = 359 and Reo =0. In Coles’ (1965) seminal work, with η = 0.874, Γ = 27.9
and Reo = 0, more than 20 WVF states could be reached at a given Rei , depending
on ‘the whole previous history of the experiment’. This multiplicity of flow states may
also help to explain the difficultly in establishing a general pathway of transitions in
T-C flows.

In high aspect ratio geometries similar to the one we explore, other authors have
occasionally noted the effect of this multiplicity in the form of alternating WVF states
separated by mixed-mode states (defined by the appearance of broad spectral peaks).
This transitional non-WVF state separating WVF states is believed to be first found
by Donnelly et al. (1980), who studied WVF transitions with η = 0.876 and Γ = 80.
With η ∼= 0.88, both Park and Crawford (1983) and Ahlers, Cannell & Dominguez-
Lerma (1983) also reported seeing dislocations (‘turbutors’; cf. Donnelly and LaMar
1988) preceding WVF transitions, complete with broadened spectral peaks. King and
Swinney (1983) also found these regions of transition separating wavy modes for high
aspect ratios (>32), preventing them from identifying the stability of a certain wave
state due to the ‘extensive distortions that persist in the flow pattern near some parts
of the stability boundary’. While this multiplicity of flow states is clear in the WVF
regime, the question is ‘are these transitional mixed-mode states stable?’ Beyond the
literature reviewed above, this interesting mixed-mode phenomena and regime has yet
to receive detailed dynamic characterization as a function of Rei and the question of
its stability remains unresolved.

As Rei is increased beyond WVF and these transitional flows, MWV is commonly
observed. Gorman and Swinney (1982) found 12 distinct modulated wave states,
produced through a variety of initial conditions, with η = 0.88 and Γ = 20. At still
higher Rei , a chaotic flow emerges, chaotic wavy vortex flow (CWV), and overlaps
with the MWV, followed by WTV and turbulent Taylor vortex flow (TTV) (e.g.
Barcilon et al. 1979; Fenstermacher, Swinney & Gollub 1979; Koschmieder 1979;
Walden & Donnelly 1979; Takeda 1999). Featureless turbulence (Smith & Townsend
1982; Lathrop, Fineberg, & Swinney 1992) and ensuing flow states involving the
re-emergence of a fast azimuthal wave seen by Takeda (1999), Wang, Olsen & Vigil
(2005) and Walden and Donnelly (1979) are not explored in this paper.

These post-WVF states have been well documented in the literature for a geometry
of η ∼= 0.88 and Γ ∼= 20 (see e.g. Gollub and Swinney 1975; Fenstermacher et al. 1979;
Gorman and Swinney 1982; Brandstater and Swinney 1987). In general, the reported
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pathway consists of transitions to MWV in the range of Re∗ = 9–10, chaotic flow
around Re∗ =11–12, loss of a modulated temporal frequency around Re∗ = 18–19
and TTV near Re∗ = 21. Similar transitions were also found with η = 0.904, Γ = 20,
in a series of papers by Takeda (1999) and Takeda et al. (1992, 1993). Barcilon
et al. (1979), with η = 0.908 and Γ = 65, describe a slightly different transition to
TTV. However, while Barcilon et al. (1979) do not rigorously define their ramping
protocol, comments about how the use of air instead of a high viscosity oil yielded
differences in the value and number of predominant wavenumbers suggest that a
constant dimensionless ramp rate was not used.

When the constraint that the outer cylinder is stationary (i.e. Reo = 0) is relaxed,
the value of Reo plays an important role on Rec (Taylor 1923; Donnelly & Fultz
1960; Coles 1965; Snyder 1968; Andereck et al. 1986) as well as on higher order
instabilities. A very different behaviour is observed in the co- and counter-rotational
regimes, corresponding to Reo > 0 and Reo < 0, respectively. Andereck et al. (1986),
in their seminal paper, mapped the stability boundaries for large portions of both
the co- and the counter-rotational Rei − Reo plane primarily for η = 0.88 and Γ = 30.
In addition, Andereck, Dickman & Swinney (1983), Baxter & Andereck (1986) and
Hegseth, Baxter & Andereck (1996) thoroughly mapped the co-rotational phase space,
up to Rei ∼ 2000, and clearly defined flow states such as wavy inflow boundaries, wavy
outflow boundaries, twisted vortices, and wavelets, again at η = 0.88, and Γ = 30.
However, the co-rotational regime has not received detailed spectral analysis of the
dynamic transitions between modes, early-modulated wavy states have not been
reported and mappings have not been made for T-C geometries with aspect ratios
> 30 or η �= 0.88. While expressions for Rec(η, Reo) exist for the primary instability
(Coles 1967; Esser & Grossmann 1996; Dutcher & Muller 2007), there is no such
description for secondary and higher flow states with a rotating outer cylinder, in
large part due to the scarcity of experimental data available.

In this introduction, many experimental studies and their location in the
multi-dimensional parameter space have been reviewed to emphasize the gaps in
understanding of the Newtonian T-C problem, especially for higher order transitions
to turbulence. Table 1 summarizes the geometries, Rei range, Reo range and the
ramping protocol (when available) of some of the works cited above and a number
of other relevant studies. The studies listed are representative of experiments in the
Reo =0 and Reo > 0 regimes that have accessed higher order flow states, demonstrating
the wide range of η, Γ , dRei/dτ , Reo and Rei used. As described above, an
understanding of flows with mixed-mode features, weakly turbulent dynamics and
Reo > 0 would benefit from an increased library of characterization of flow regimes
and transitions. Researchers interested in studies of tertiary variables (e.g. fluid
elasticity, eccentricity of the cylinders and presence of a magnetic field) on a range
of flow types will also benefit from the increased library of characterization offered
here.

In this study, we examine flow transitions for a Taylor–Couette cell of radius ratio
η = 0.912 and aspect ratio Γ = 60.7 in the range of 0 <Re∗ < 21.4. We focus primarily
on flows with Reo = 0, but we also consider co-rotational flows for Reo � 75 and
Rei up to 550. We present the detailed temporal and spatial frequency evolution
from Couette flow to TTV for multiple ramping conditions, using a quantitative
methodology that has not been previously applied to pre-chaotic transitions or for
co-rotational flows. The manner in which the Reo, Rei condition is reached (i.e.
ramping protocol) plays an important role in the flow states accessed and the critical
condition observed, and is given particular attention in our study. A review of previous
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Authors η Γ Reo Rei /Rec Range Ramp protocolh

Abshagen et al. (2005) 0.5 3–3.25 0 ∼4 to ∼12 n/g

Meincke & Egbers (1999) 0.5, 0.85 3.97, 13.2 0 1 to ∼27 “quasi-stationary”

Benjamin & Mullin (1982) 0.600 12.61 0 Rei = 359 varied

Smith & Townsend (1982) 0.667 23.7 0 100 to ∼1500 n/g

Park et al. (1981) 0.678, 0.88 10.1–46.7 0 1 tested

Lathrop et al. (1992) 0.7246 11.47 0 O(10◦)–O(104) prepared state

Lewis & Swinney (1999) 0.724 11.4, 9.8 0 O(101)–O(104) “slowly”

Koschmieder (1979) 0.727, 0.896 50, 123 0 1–200 tested

Wang et al. (2005) 0.733 34 0 6–200 prepared statei

Mullin (1985) 0.8, 0.83, 0.9 13–32 0 1–7.2 prepared state

King & Swinney (1983) 0.868 32–290b 0 1.4–8 a < 0.47

Coles (1965) 0.874, 0.881a 27.9 (−8 to 1)∗104 1 to ∼170 varied

Brandstater & Swinney (1987) 0.875 20 0 ∼10 to 26.3 n/g

Donnelly et al. (1980) 0.876 80 0 1–25 n/g

Walden & Donnelly (1979) 0.876 18–80 0 1–67f “slowly”

Coughlin et al. (1991) 0.876 40 0 8.5–10 prepared state

Fenstermacher et al. (1979) 0.877 20 0 5.4–45 17/4 prepared

Gollub & Swinney (1975) 0.8756 19.8 0 1–22.75 “reversibly”

Park & Crawford (1983) 0.88 53.9, 62.16, 70.4 0 1+ to 1.55 a = 0.0089j

Hegseth et al. (1996) 0.882 30 0–1100 1 to ∼17 a < 0.667

Xiao et al. (2002) 0.894 94 0 1–36 tested

Andereck et al. (1983) 0.883 30 500–1100 1 to ∼11 prepared state

Andereck et al. (1986) 0.883 20–48c (−4 to 4)∗103e 1–20+ a = 0.79 ± 0.086k

Gorman & Swinney (1982) 0.883 20 0 6–25 varied

Zhang & Swinney (1985) 0.883 10–50d 0 1+ to 10 n/g

Baxter & Andereck (1986) 0.883 30, 70 0–1000 1 to ∼17 a < 0.667

Ahlers et al. (1983) 0.893 53.9 0 1.2–1.6 “very slowly”

Takeda (1999) 0.904 20 0 7.1–145.6 ramped downl

Barcilon et al. (1979) 0.908 65 0 1 to ∼300g “slowly”

Dutcher & Muller (2009) 0.912 60.7 −27 to 75 1–95 a < 0.68m

Table 1. Summary of the geometries, Reo range, Re∗ = Rei/Rec(η) range and ramping
protocol (when available) of many of the works cited in this paper.

aη = 0.881 precision cylinder used for multi-state problem, η = 0.874 rough cylinder used for
Reo �= 0 work.
bData only for Γ = 32.
cPrimarily with Γ = 30.
dPrimarily with Γ = 20.
eTransition data for −4000 <Reo < 1200.
fAvoids region of 3< Re∗ < 15.
gResults obtained with different fluids. The region of 1< Re∗ < 4.47 found using a high viscosity
oil.
hRamp Protocol: value for ‘a’ (a =dRei/dτ ) is listed either when the reference explicitly
gives an ‘a’ value or when enough information is given about the ramp, geometric and fluid
conditions to calculate a value. In all other cases, the protocol is listed as:
n/g = ramp protocol not given
tested = when the ramp rate is systematically varied as an independent variable
varied = varied ramps were used to access a variety of states
Descriptive words used in the paper, such as “slowly” or “reversibly”
prepared state = when a specific state is formed first (e.g. setting the axial and azimuthal
wavenumber of WVF) and then Rei was either held steady or ramped slowly from that state
through other states, but the specific ramp rate is not given.
Exceptions to these cases are noted here:
iRamped to Re∗ = 55 with ‘a’ ∼8200, then either ramped up at the same rate or ramped down
at ‘a’ ∼ 3300.
jRate after TVF formation.
kCalculated assuming temperature in the range of 20–25◦C.
lPrimarily started at highest Re∗ and ramped down with ‘small steps’.
mModified ramp for Re∗ > 10.7.
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ramping protocols and a discussion of the ones used in this work are presented in
§ 2.2. For our geometry, we find a novel stabilization of an early MWV flow and
assess its stability dependence on ramp rate as well as fully characterize its temporal
and spatial frequency signature over the entire Rei range. We also offer a unique
characterization of some turbulent states and their structures and transitions. In
addition, we propose a generic set of transitions to turbulence for our high aspect
ratio, narrow gap geometry that agrees with experiments (for different η and Γ )
summarized here, in which the local predominant temporal frequency increases and
distinct temporal and spatial frequencies emerge and later decay with increasing Rei .

2. Experimental procedure
2.1. Taylor–Couette geometry

The flow between concentric cylinders is accomplished using a custom-designed and
built T-C cell for flow visualization and spectral analysis. The rotation of each
cylinder is controlled independently. Temperature control, ± 0.1◦C, is obtained via
a continuously stirred paraffin oil bath in a Plexiglass box surrounding the outer
cylinder. The oil surrounding the outer cylinder also reduces visual distortions by
matching the refractive index of the curved glass outer cylinder. Stagnant mineral
oil within the inner cylinder adds thermal mass to the system and helps stabilize the
temperature. The size of the T-C cell, Ri = 0.06946 m, Ro =0.07615 m and h = 0.406 m,
makes it ideal for high resolution flow visualization and corresponds to a radius ratio
η = 0.912 and an aspect ratio Γ = 60.7.

The flow visualization is realized using two CCD cameras that allow visualization
of the (r, z) and (z, projected-Θ) planes and, through subsequent processing, space–
time plots of the (z,t) and (r,t) planes. Quantitative information about the flow field
can be obtained from these space–time plots (e.g. Abcha et al. 2008). In the present
work, the visualization is achieved by seeding the solutions with anisotropic tracers
(mica flakes); the orientation of the flakes by the flow field results in variations of the
intensity of the light reflected from ambient lighting for the (z, projected-Θ) plane.
For visualization in the (r, z) plane, an argon ion laser is directed through a Powell
lens to create a thin light sheet oriented parallel to and containing the cylinder axis.
Typical seeding levels of the mica flakes are 2 × 10−5 volume fraction. Captured
images are then processed via background subtraction, normalization and spatial and
temporal averaging techniques described elsewhere (White 2002). The control of image
capture, processing and cylinder motion have been integrated in order to track rapidly
evolving flows. Flow visualization and motion control is accomplished using a code
developed on a LabVIEW platform, with the Compumotor motion control toolbox
and the National Instruments vision development module. The image acquisition
driver software is NI-IMAQ, which communicates with the IMAQ PCI-1409 frame
grabber.

2.2. Ramp rate

The determination of the critical condition of an instability may depend strongly
on the path used to access the state. For example, an instantaneous ramp to
one parametric set of conditions may result in a different flow state than when
those conditions are reached under “adiabatic” ramps. Due to this difference, a
critically slow dimensionless ramp rate was determined and used for all fluids. The
dimensionless ramp rate is an acceleration defined by the change in a dimensionless
velocity, the Reynolds number, �Re = �ΩiRid/ν, with respect to the change in a
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Figure 1. Ramp test used to determine the critical dRe/dτ value used in quasi-static
experiments. In the subplot, the dark error bars represent experimental uncertainty, while
the grey error bars represent the sum of both the experimental uncertainty and the range of
Re between the onset of TVF (counted as formation of the third vortex from each end) and
steady TVF. The solid line is the critical condition predicted by linear stability theory. Point (1)
is used in these experiments as the critical dimensionless ramp rate, as it lies within the regime
where there is no change of the critical condition within experimental confidence. Point (2)
is the ramp rate suggested by Baxter & Andereck (1986) of (20/Γ ) > (dRe/dτ ), which takes
into account aspect ratio effects, and point (3) is the ramp rate used by Andereck et al. (1986),
when cast in terms of dRe/dτ .

dimensionless time scale, �t = �t/(d2/ν). The time scale is made dimensionless by the
viscous time scale, d2/ν, which is much smaller than other time scales present in the
system (e.g. the time scale = h2/ν required for the diffusion of vorticity from the ends
of the cylinder and the thermal time scale = d2/α, where α is the thermal diffusivity).

Four Newtonian solutions of glycerin and water (7 %, 50 %, 61 % and 80 %
glycerin) were used to obtain a wide range of τ and Re and determine the critical
dimensionless ramp rate as follows. The critical condition for TVF at Reo = 0 was
determined as a function of ramp rate. When the critical condition approached that
defined by linear stability theory and became independent of ramp rate within the
measurement error, the critical dimensionless ramp rate, (dRe/dτ )c = ac, was defined
(figure 1). In general, the critical condition at dRe/dτ < 1 approaches that defined
by linear stability theory (Rec = 140.2), but remains above the predicted value by
a few percent. This predicted value of 140.2 is used to calculate Re∗ = Rei/Rec.
From the results shown in figure 1, ac was assigned to 0.68. For comparison, a
conservative estimation of the dimensionless ramp rate used by Andereck et al.
(1986) is dRe/dt ∼ 0.8 (based on water at 20◦C and considering the viscosity increase
due to the seeding particles).

We note that other researchers (Park, Crawford & Donnelly 1981; Baxter and
Andereck 1986; Czarny and Lueptow 2007) have suggested a time scale of dh/ν

instead of d2/ν for non-dimensionalizing the ramp rate. Park et al. (1981), considering
the primary transition, suggested the criterion for a quasi-non-hysteretic dimensionless
ramp rate as (dRe/dt) × (dh/ν) < 10. However, when the ramp rates from Park et al.
(1981) are recast in terms of dRe/dτ , we find that the critical condition is well
described by dRe/dτ < 2/3, which is essentially identical to the condition we use. Also,
Baxter and Andereck (1986) found that, for their geometry, quasi-static conditions
could be found for (dRe/dt) × (dh/ν) < 20. Using this criterion for our geometry, the
critical ramp rate would be dRe/dτ < 1/3. However, figure 1 shows that this ramp
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rate does not significantly alter the critical condition. When, instead, the critical ramp
rate of (dRe/dt) × (dh/ν) < 20 is cast in terms of dRe/dτ for the geometry used by
Baxter and Andereck (1986), we once again see the critical ramp rate of dRe/dτ < 2/3.
The critical ramp rate used in this work, that used by Andereck et al. (1986) and
the critical rate suggested by Baxter and Andereck of (dRe/dt) × (dh/ν) < 20 are
indicated in figure 1.

The effect of ramp rate on higher order flow states (e.g. WVF) has been
explored experimentally by Xiao, Lim & Chew (2002) with η =0.894 and Γ = 94,
who found that the wave speed and the amplitude were essentially unaffected
by dimensionless ramp rates below dRe/dτ ∼ 10. Other studies, such as Baer &
Gaekel (2008) and Pfister & Gerdts (1981), have explored the effect of ramping
protocol on a Hopf bifurcation (e.g. to WVF). With sudden increases or decreases
in Rei , Pfister and Gerdts (1981) found a critical slowing down of the time scale
associated with the formation or decay of a steady oscillation amplitude near the
bifurcation point. Additionally, Baer and Gaekel (2008) studied a Hopf bifurcation
with linear and nonlinear ramping protocols and found differences in the location
of the critical conditions depending on whether the ramp involved acceleration or
deceleration through the bifurcation. This critical slowing down suggests that a
constant dimensionless ramp rate may not be the optimal strategy for determining
the critical conditions near Hopf bifurcations; however, we believe that this approach
is the best compromise for the present study in which we are examining a broad
range of transitions, fluids and Reo.

Unless otherwise noted, the results presented below were found using the critical
ramp rate of dRe/dτ = ac =0.68. The ramp is achieved by a series of small steps
in angular velocity of 0.001 rotations s−1 (the minimum achievable with the stepper
motors), where each step in angular velocity is held for an appropriate period of time.
While the size of the steps in Rei depends on the viscosity of the fluid, the critical
ramp had step sizes of �Rei < 0.6. Others have noted that slow drifts in the control
parameter can lead to alternative pathways of transitions (Sinha, Kevrekidis, & Smits
2006; Avila et al. 2007; Abshagen et al. 2008), and so care needs to be exercised
in interpreting the results from these ramp experiments. We believe (based on the
resolution of our stepper motors, the temperature control of the cell, etc.) that the drift
is nominal over the time scale probed for the present quasi-static ramps; indeed, results
shown later (figure 6) reveal the same transition pathway even with varied ramping
protocols. To access the higher order flow states discussed in § 3.3 in a reasonable
amount of time, a modified ramping procedure was used. The critical condition
defining the onset of the flow state was measured as a function of dimensionless ramp
rate dRe/dτ , then extrapolated to dRe/dτ = ac = 0.68. In experiments with Reo �= 0,
Reo was established first, and then Rei was reached through a ramp at ac while
maintaining Reo constant.

2.3. Flow characterization

Changes in stability during adiabatic increases of Rei were determined using
flow visualization and spectral analysis. All flow states are characterized by
symmetry/symmetry-breaking features as well as by wavenumbers in the azimuthal
and axial directions. Flow visualization images of 2D spatial planes, captured at 33
ms intervals (30 fps), were collected over times of order 1–10 hr. From these image
sequences, space–time plots were generated by extracting single (1D) lines of pixel
intensity at a particular spatial location from sequential images.
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Figure 2. Overall sequence of transitions for a quasi-static ramp for T-C flow with η = 0.912,
Γ = 60.7 and Reo = 0 and generic pathway features (read clockwise starting from AZI). Errors
associated with the WVF1, MWV1 and WVF2 transitions are the standard deviation of the
trials over all ramps from (0.26)ac < dRe/dτ < (4.31)ac . The errors for MWV2 and CWV are
from the standard deviation of the trials with the typical pathway found with dRe/dτ = ac . #k
and #ω are the number of well-defined, distinct spatial wavenumbers and temporal frequencies,
respectively, present in the flow state.

The 2D fast Fourier transforms (FFT) of small subsections of the resulting space–
time plots were then taken at regular, overlapping intervals. These subsections were
small enough that Re does not vary significantly, but large enough that they were
several times longer than the time scale associated with the inverse of the frequency
of the flow state. The plots of the complex modulus of the 2D FFT |F (κ, ω)|, where κ

and ω are the spatial and temporal frequencies, respectively, were then averaged across
spatial frequencies to determine a 1D averaged dependence on temporal frequency,
< |F (ω)| > κ . Likewise, averages across temporal frequencies produce 1D plots of
the complex modulus as a function of spatial frequency ( < |F (κ)| > ω) or spatial
wavenumber ( < |F (k)| > ω), where k = 2πdκ . These averaged complex moduli of the
FFTs are then stacked as a function of Rei (or time) to display the temporal and
spatial spectral evolution of multiple flow states as the flow transitions from laminar
to turbulent flow. These plots are referred to as temporal frequency–time or spatial
wavenumber–time plots throughout the paper. From these frequency/wavenumber–
time plots, the emergence or decay of temporal and spatial frequencies, and thus the
critical condition for each flow state, can be easily identified.

The resultant spectral evolution plots are similar to those reported by Takeda (1999)
for Re∗ > 7. However, these plots have not been reported for pre-chaotic transitions
or co-rotational flows. Values on the spatial wavenumber axis could be determined
to within ± 4.3 %; the error is based on the spatial resolution established by the
pixel size in our imaging set-up. The temporal frequency can be determined to within
around ± 0.5 %; the error is based on the non-zero ramp rate and the image capture
rate. In § 3, both the space–time and frequency/wavenumber–time plots are given for
each flow state transition, with the corresponding 1D FFT and 2D FFT plots for
each specific flow state.

3. Results and discussion
Flow state transitions with Reo =0 follow a pathway of increasing temporal

frequency complexity with increasing Rei . These observed transitions, comparisons
with similar transitions in other geometries in the literature and discussions of the
unique features are described in § § 3.1–3.3. The overall quasi-static pathway is shown
in figure 2, where #k is the number of well-defined, distinct spatial wavenumbers
and #ω is the number of well-defined, distinct temporal frequencies present in the
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flow state. This figure demonstrates the pathway’s energy cascade, in which there is
first an increase in the number of spatial then temporal frequencies, followed by the
appearance of a broad component in the spectrum with a decrease in the number of
well-defined, distinct temporal then spatial wavenumbers.

3.1. Lower order flow transitions: Axisymmetric and non-axisymmetric
laminar torodial rings

For a stationary outer cylinder (as well as for the small range of Reo near zero
considered here), the primary instability from Couette flow (which we denote by
AZI, for purely azimuthal flow) is to TVF. TVF is characterized by axisymmetric
toroidal vortices that define an invariant manifold (heteroclinic orbit) with hyperbolic
fixed points at the walls at intervals defined by an axial wavenumber, in which the
streamlines do not cross from one ring to the adjacent ring. As more energy is added
to the system, a secondary mode is excited at a second critical condition. At this
transition, the heteroclinic orbit becomes a heteroclinic tangle, and fluid elements
from one vortex can enter into another. This transport of fluid elements causes
movement at the vortex boundaries at a unique azimuthal wave number. As noted
by Coles (1965), the WVF state is part of a ‘nonlinear regime of Taylor flow’, so
the state, defined by the axial and azimuthal wave numbers, depends strongly on the
manner in which it is accessed.

The transitions from AZI to TVF to WVF are shown in figure 3 for a ramp
rate of ac and a fluid of viscous time scale ≈ 9.5 s. Figure 3(a) illustrates the
evolution of the flow in the axial direction, z, over the length �z/d = 32.5 in a space–
time plot, from Rei = 123 to 200. This particular plot contains information from over
30 000 sequential images of flow in the z-Θ plane. The critical condition for TVF
is at Rei = 144 ± 4.2 (Re∗ =1.03 ± 0.03) (compare figure 1), the transition to WVF
occurs at Rei =164.2 ± 3.4 (Re∗ =1.17 ± 0.00) and the destabilization of WVF (i.e. the
emergence of MWV1) occurs at Rei = 198.3 ± 8.6 (Re∗ = 1.41 ± 0.06). While the ramp
rate dependence of TVF is shown in figure 1 and the critical condition is reported for
a ramp rate of ac, the transitions to WVF1 and MWV1 were found to be independent
of ramp rate for the range of (0.26)ac < dRe/dτ < (4.31)ac (discussed below, figure 8).
The given critical conditions and error for these later transitions are from the average
and standard deviation from experiments conducted over this range of ramp rates.
Figures 3(b) and 3(c) show the development of the temporal frequencies and spatial
wavenumbers, respectively, of the flow in figure 3(a) with Rei . Sets of 2D FFT, 1D
< |F (ω)| > k and 1D < |F (k)| >ω are shown in figures 3(d–f ), 3(g–i ) and 3(j–l ) for
Rei =175, 155 and 135, respectively, corresponding to WVF, TVF and AZI.

The frequency associated with the inner cylinder rotation (due to slight azimuthal
variations in the anodization of the inner cylinder that produce changes in the
intensity of the reflected light as the cylinder rotates) can be seen even in the
purely azimuthal flow and is observed for all Rei , independent of the flow state. The
frequency from the inner cylinder rotation is denoted in the 1D < |F (ω)| > k figures
with an asterisk, ‘∗’ (e.g. figure 3e,h,k ). It should be noted that typically when the
frequency of cylinder rotation is observed by others (e.g. Andereck et al. 1983, 1986;
Zhang & Swinney 1985) in the power spectrum, it is also attributed to light reflection
artefacts, as it is here. These artefacts may arise due to azimuthal optical variations
in the cylinders (e.g. uneven anodization) or may be due to some nominal degree of
eccentricity. However, the presence of the frequency even in the purely azimuthal flow
suggests that this frequency, along with any harmonics, is not associated with the flow
state.
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Figure 3. Transitions from AZI to TVF to WVF1 to the cascade region within MWV1. The
frequency associated with the inner cylinder rotation can be seen even in the purely azimuthal
flow and is observed throughout for all Rei , independent of the flow state, and is denoted by
‘∗’. The transitions are shown in a space–time plot (a), temporal frequency–time plot (b) and
a spatial wavenumber–time plot (c), where the grey contours represent the magnitude of the
complex modulus of the FFT, F, normalized by the maximum value (Max[F]) at each value
of time or, equivalently, Rei . Sets of 2D FFT, 1D averaged temporal frequencies, < |F (w)| >k ,
and 1D averaged spatial wavenumbers, < |F (k)| >ω , are shown in (d–f ), (g–i ) and (j–l ) for
Rei = 175, 155 and 135, respectively. Figure 3(d–f ) shows an example of WVF, (g–i ) of TVF
and (j–l ) of AZI. All plots are for Reo =0 and a ramp rate of ac . Note that ‘∗’, kA and
ωWVF are the spatial wavenumber or temporal frequencies associated with the inner cylinder
rotation, axial periodicity and azimuthal wave for WVF1, respectively.

The wavenumber associated with the axial periodicity of the flow, kA, becomes
evident at the onset of TVF, and can be seen along with harmonics in spatial
wavenumber plots above Re∗ = 1 (figure 3e,f,i ). The low temporal frequency peak
seen in figure 3(b) for a small range of Rei near the onset of TVF is that associated



96 C. S. Dutcher and S. J. Muller

with the initial arrangement of the Taylor vortices. In all experiments at the critical
ramp rate ac, axisymmetric Taylor vortices become fully formed and this temporal
frequency vanishes prior to any subsequent transitions. In the formation of wavy
vortex flow, a temporal frequency and its harmonics develop (figure 3b,e), denoted
by ωWV F . Also, after the onset of WVF, the dominant spatial wavenumber decreases
monotonically with Rei , indicating a smooth growth of vortex size (figure 3c).

3.2. Oscillations between wavy and early-modulated wavy flows

As Rei is increased further, WVF is supplanted by a state we denote by MWV1,
corresponding to either (i) the broadening of the spectral peak associated with a single
dominant temporal frequency (compare figure 3e and figure 4e) or (ii) the appearance
of multiple distinct dominant temporal frequencies. Figure 4 shows space–time,
frequency–time and wavenumber–time plots obtained at a ramp rate of ac for a fluid
of viscous time scale ≈ 9.5 s, similar to those shown for a lower range of Rei in figure
3, for the transition to MWV1. Figures 4(d–f ), 4(g–i ) and 4(j–l ) for Rei = 300, 250 and
200, respectively, show an example of fully formed MWV1 (d–f ), the cascade region
(g–i ) and the onset of the cascade region (j–l ). The onset of the cascade region displays
clear spectral differences from WVF, as can be seen by comparing figure 4 (j–l )
at Rei = 200 with figure 3(d–f ) at Rei = 175. The cascade region will be defined more
fully below. A transition to MWV1 is evident at Rei = 198.3 ± 8.58 (Re∗ = 1.41 ± 0.06)
for all ramp rates in the range (0.26)ac < dRe/dτ < (4.31)ac. The critical condition of
Re∗ = 1.41 is in good agreement with a transitional Re∗ reported by Donnelly et al.
(1980) of 1.35 (for η = 0.876 and Γ = 80), who also reported spectral peak broadening.
In the transition to MWV1, we find from the space–time plot (figure 4a) that the
phase of WVF unlocks prior to the peak in spatial wavenumber broadening and
dislocation occurrences, similar to the phase unlocking described by Andereck et al.
(1986) prior to the onset of MWV in the counter-rotating regime. This MWV flow
regime has not been previously reported for Reo = 0.

We define the cascade region of MWV1 as having a temporal spectrum capturing
both MWV1 features coupled with a smooth, nearly continuously decaying profile
(figures 4h and 4k ). From figures 4(b) and 4(h) a dominant temporal frequency is still
evident in this cascading regime of MWV1. The location of the dominant temporal
peak, ωW , cascades through a series of steps to higher temporal frequencies with
increasing Rei , from the frequency associated with WVF1 to that of WVF2. Examples
of these steps in dominant temporal frequency from ωWV F to ωW to ωWV F2 can be seen
in figures 4(k ), 4(h) and 4(e) for Rei = 200, 250 and 300, respectively. This cascade
occurs in the same regime where Park and Crawford (1983) and Ahlers et al. (1983)
saw changes in axial wavenumber. The events these authors describe seem similar in
nature to those reported in figures 4(a–c) and 4(g–i ), where there is a broadening of
the temporal spectral peak and spatial rearrangement occurs.

After Re∗ ∼ 1.94 (Rei ∼ 270), a higher azimuthal wavenumber emerges, which is
associated with WVF2, and is stabilized until Re∗ = 5.49 (Rei = 770). This transition
at Re∗ ∼ 1.94 is near to that reported by Donnelly et al. (1980) of Re∗ ∼ 2.1, although
instead of observing a WVF state again, we see that the additional temporal frequency
associated with a modulation remains. Donnelly et al. (1980) reported that dislocations
drove their observed transitional flow regime that separated the WVF regimes, and
they did not report a stabilized modulated frequency. We note that the early-
modulated flow state seen in the present work can occur both with and without
dislocations. The modulation of a periodic variation of the wave amplitude can occur
both with and without a secondary wave.
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Figure 4. Transition from WVF to MWV1. The transition is shown in a space–time plot (a),
temporal frequency–time plot (b) and a spatial wavenumber–time plot (c), analogous to those
in figure 3. Sets of 2D FFT, 1D averaged temporal frequencies, < |F (ω)| > k , and 1D averaged
spatial wavenumbers, < |F (k)| > ω , are shown in (d–f ), (g–i ) and (j–l ) for Rei =300, 250 and
200, respectively. Figure 4(d–f ) shows an example of fully formed MWV1, (g–i ) of the cascade
region and (j–l ) at the onset of the cascade region. All plots are for Reo = 0 and ramp rate of
ac . Note that kA, ‘∗’, ωW , ωWV F and ωWV F2 are the spatial wavenumber or temporal frequencies
associated with the axial periodicity, inner cylinder rotation and dominant azimuthal wave
observed at Reo = 250 or associated with WVF and WVF2, respectively.
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Figure 5. Typical transition from MWV1 to WVF2. The transitions are shown in a space–time
plot (a), temporal frequency–time plot (b) and a spatial wavenumber–time plot (c), analogous
to those in figure 3. Sets of 2D FFT, 1D averaged temporal frequencies, < |F (ω)| > k , and 1D
averaged spatial wavenumbers, < |F (k)| > ω , are shown in (d–f ) and (g–i ) for Rei = 550 and
500, respectively. Figure 5(d–f ) shows an example of WVF2 (g–i ) of MWV1. All plots are for
Reo =0 and ramp rate of ac . Note that kA, ‘∗’, ‘+’ and ωWV F2 are the spatial wavenumber or
temporal frequencies associated with the axial periodicity, inner cylinder rotation, amplitude
modulation seen in MWV1 and a dominant azimuthal wave seen in WVF2, respectively.

At still higher Rei , figure 5 shows space–time, frequency–time and wavenumber–
time plots obtained at a ramp rate of ac for the MWV1 regime and the transition from
MWV1 to WVF2. This transition from MWV1 to WVF2 occurs at Re∗ = 3.56 ± 0.14
(Re = 498.5 ± 19.0) for all ramp rates in the range (0.26)ac < dRe/dτ < (4.31)ac. Sets
of 2D FFT, 1D < |F (ω)| > k and 1D < |F (k)| >ω are shown in figures 5(d–f ) and
5(g–i ) for Rei = 550 and 500, respectively, corresponding to WVF2 and MWV1. It is
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also clear from both the space–time plots and the spatial wavenumber–time plots of
figures 5(c) and 5(i ) that a single dominant spatial wavenumber is possible within
MWV1. Even long after the recovery from a dislocation, a modulated wave of a low
temporal frequency is clear in MWV1 (compare figure 5h for MWV1 with a low
temporal frequency associated with the modulation, denoted by “+”, with figure 5(e)
for WVF2 with no modulated temporal frequency).

From the literature, it is thought that the mixed-mode states, like that seen in
MWV1, could be related to either transients associated with the height of the cell
(through a time scale h2/ν) or the competition between the many modes allowed
by the long geometry (King & Swinney 1983). An argument can be made for the
stability of the mixed-mode states from the description from Donnelly et al. (1980)
of the broadening of the power spectra as ‘a persistent feature of the flow’. While the
ramp protocol was not reported by Donnelly et al. (1980), it was reported that the
transitional flow state persisted even when waiting for a time that was long compared
with the end effect time scale 0.15h2/ν suggested by Snyder (1969). Also, while most
of their observations of distorted wave patterns were discussed for Γ > 32, King and
Swinney (1983) do observe ‘persistent distorted wave patterns even for Γ � 30’. The
presence of enduring mixed-mode flow in geometries with moderately smaller aspect
ratios again supports the argument that the distorted WVF pattern is a stable state
that corresponds to a mixed-mode solution rather than a transient state associated
with long geometries.

In order to elucidate the stability of this early MWV1 mode, the flow state was
accessed using a wide range of ramp rates. If MWV1 is a transient state associated
with the height of the cell (through a time scale h2/ν), then the Rei range of stability
would scale proportionally to the dimensionless ramp rate used. Figure 6 shows the
range of stability for MWV1 in temporal frequency–time plots for 150 <Rei < 650
accessed with the critical ramp rate, ac (a–d ), and with ramp rates that varied over an
order of magnitude (e–h). Figure 6(a–d ) shows the typical variation in the stability
range for the same ramp rate. Here, for a ramp rate of ac, the transition from WVF1

to MWV1 occurs at Re∗ = 1.43 ± 0.03 and the transition from MWV1 to WVF2 occurs
at Re∗ = 3.59 ± 0.10 (Rei =503.5 ± 13.9), leading to a range of stability for MWV1 of
�Rei = 303.2 ± 14.4. A non-monotonic, and comparable, variation of the transitions is
also present in experiments that differed in ramp rate by a factor of 16.6 (figure 6e–h).
Here, the transition from WVF1 to MWV1 occurs at Re∗ = 1.41 ± 0.06 and the
transition from MWV1 to WVF2 occurs at Re∗ = 3.56 ± 0.14 (Rei = 498.5 ± 19.0),
leading to a range of stability for MWV1 of �Rei = 300.3 ± 20.8. The slowest
ramp used, of 0.26ac, (figure 6h), corresponds to a series of very small steps in Rei

during which Rei is held constant for several (∼3.3) viscous time scales. The MWV1

stability thus appears to be independent of ramp rate and cannot be made to vanish
with a sufficiently slow ramp, which indicates that MWV1 is not a transient flow
state.

The broadening of the spectrum seen in the cascade region (described by Ahlers
et al. 1983; Park and Crawford 1983) admittedly does experience some decay with
decreasing ramp rate, although the stability range of the cascade regime decreases
only by a factor of ∼2.5. In all cases, the dominant frequency cascade is still evident
across ramps and a stabilized MWV1 both with and without dislocations occurs.
It should be noted that with the slowest ramp rate, dRe/dτ = (0.26)ac, the first
transition occurred with defects in the TVF structure. In order to start from the same
TVF structure as with other ramps, the ramp shown in figure 6(h) was achieved by
first ramping past the primary transition with a critical ramp rate, ac, to Rei = 155,
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Figure 6. Typical temporal frequency–time plots for the same (a–d ) and various ramp rates
(e–h). The ramp rates are (a–d ) dRe/dτ = ac , (e) dRe/dτ = (4.31)ac, (f ) dRe/dτ = ac , (g)
dRe/dτ = (0.43)ac, (h) dRe/dτ =(0.26)ac , where (b) and (f ) are the same experiments. The
grey contours represent the magnitude of the complex modulus of the FFT, F, normalized by
the maximum value (Max[F]) at each value of Rei . The white region represents a region where
no data were recorded.

then slowing the ramp to the dRe/dτ = (0.26)ac rate. In this way, the transitions of
interest (WVF to MWV1 to WVF2) could be accessed from the same starting flow
state.

MWV1 seems different from the early non-propagating oscillatory mode presented
by Zhang & Swinney (1985) for η = 0.883, 10 <Γ < 50 within the range of
3 <Re∗ < 10, where they report occurrences of a non-periodic stationary mode.
Instead, based on our flow visualization and spectral analysis, the flow state seen



Higher order transitions in high aspect ratio Newtonian Taylor–Couette flows 101

here parallels the early modulation that has been reported in the counter-rotating
regime by Andereck et al. (1986). This novel stabilization of early-modulated waves
seems to represent the superposition of multiple wavy modes competing for stability.

Like Andereck et al. (1986), we also see early MWV in the counter-rotation
plane, demonstrated in a temporal frequency–time plot in figure 7 for Reo = −27.
Unlike Andereck et al., we found that MWV1 was stabilized for Reo =0 (figure 7b),
indicating that our different geometry may allow the envelope of MWV1 stability
on Reo – Rei coordinates to traverse the stationary outer cylinder axis and extend
into the co-rotation regime. Figure 7 is a series of temporal frequency–time plots
for 125 <Rei < 558 and Reo of −27, 0, 13, 30, 50, 70 and 75. It is clear from
these data that the early MWV, separating WVF1 and WVF2 in the range of
198.3 ± 8.6 <Rei < 498.5 ± 19.0 for Reo = 0, also occurs in the co-rotation regime.
The range of stability separating WVF1 and WVF2 narrows with increasing Reo (e.g.
177 < Rei < 408 for Reo = 30, 190 < Rei < 280 for Reo = 50) and disappears between
50 < Reo < 70. This apparent stabilization of early MWV1 is likely due to the high
aspect ratio of our geometry, since our Γ differs more significantly than our η from
those of Andereck et al. and multiple modes can be supported by a high aspect
ratio as discussed in the introduction for Reo = 0 flows. Another interesting aspect
of figure 7 is the stability of three distinct wavy vortex flow states for Reo � 50
separated by brief cascading periods. The cascade regions seen at Reo = 70 and 75
separating WVF1, WVF2 and WVF3 regions are still present at Reo =85 (not shown).
At Reo = 85 we also observed added complexity in the form of additional modulations
of temporal frequency within the WVF3 regime.

Fuller quantitative studies based on the FFT analysis of the co-rotation regime
are beyond the scope of the present work. However, we include in figure 8 a phase
diagram of the entire range of Rei – Reo accessible in our experiments based on the
approximate assignment of the stability of each flow state from space–time plots. The
assignment of the higher order states is consistent with the definitions of Andereck
et al. (1986), although the stability boundaries are shifted due to the differences in η

and Γ . We believe that these data will be useful in developing expressions for Rec(η,
Reo) for higher transitions and as a baseline for looking at the effects of additional
variables (elasticity, imposed temperature gradients, magnetic fields, etc.) on flow
transitions in Taylor–Couette flows.

3.3. Higher order flow transitions: MWV2, non-axisymmetric
and axisymmetric chaotic vortices

Returning to the Reo =0 case, at still higher Rei , the modulation of WVF2 begins to
occur, resulting in MWV2. This occurrence of MWV2, where two distinct temporal
frequencies are present in the flow, has been discussed extensively in the literature. The
vast majority of the literature characterizing MWV2 was performed with the geometry
of η ≈ 0.88, Γ ≈ 20 (e.g. Gollub & Swinney 1975; Fenstermacher et al. 1979; Gorman
& Swinney 1982; Brandstater & Swinney 1987, see table 1) and the question of the
existence of MWV for other geometries was initially posed by Gorman & Swinney in
1982. Since then, stabilized regions of MWV in slightly different geometries have been
reported by other researchers, such as Takeda (1999) for η = 0.904 and Γ = 20 and
Meincke & Egbers (1999) for η =0.85 and Γ = 13.2; however, MWV is not observed
in smaller η experiments, such as those of Wang et al. (2005) with η =0.733 and
Γ = 34.

As is seen in the literature, within this MWV regime, a chaotic transition occurs
(e.g. Fenstermacher et al. 1979), where a broad peak appears in the spectrum and
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Figure 8. Newtonian Taylor–Couette flow stability map for radius ratio 0.912 and aspect ratio
60.7. Dashed lines indicate a gradual transition boundary. High Rei for the co-rotation regime
was not explored. Transitions with Reo < −50 where determined through visual inspection of
the fluid motion and space–time plots, instead of the detailed spectral analysis used to identify
all other transitions.

there is an increase in the background noise. Using the notation from Takeda (1999),
this new flow state is referred to here as a chaotic wavy vortex flow (CWV). Whereas
MWV is defined as having multiple temporal modes, CWV is defined as having
multiple temporal modes with the addition of the presence of backflow, small-scale
features and a broad spectral profile. Figure 9 shows space–time (a), frequency–
time (b) and wavenumber–time (c) plots obtained at a ramp rate of ac, for the
transitions from WVF2 to MWV2 to CWV. Figures 9(d–f ), 9(g–i ) and 9(j–l ) for
Rei = 800, 750 and 700, respectively, show an example of CWV (d–f ), MWV2 (g–i )
and WVF2 (j–l ). The largest unlabelled peak observed in figures 9(k ) and 9(h) is a
harmonic of the frequency associated with the inner cylinder rotation, denoted by
‘∗’. The transition to MWV2 occurs at Rei = 730 ± 5.6 (Re∗ =5.2 ± 0.04) and CWV
at Rei = 769.7 ± 7.0 (Re∗ =5.49 ± 0.05). We find that for our geometry, MWV2 by
itself, with no additional chaotic flow transition, is stable only for the small range of
�Rei = 39.7 ± 9.0 (�Re∗ = 0.29 ± 0.06).

Figure 9(b) shows the temporal frequency–time plot for the typical pathway through
the MWV2 regime. The excited modulated mode in MWV2 appears as a periodic
variation of the wavy amplitude. A less typical pathway was also found, where the
transitions to MWV2 and CWV occur at Rei = 805 ± 7.1 (Re∗ =5.74 ± 0.05) and
Rei = 879.5 ± 17.7 (Re∗ =6.27 ± 0.13), respectively. The less typical pathway delays
the MWV2 and CWV transitions, and the excited MWV mode is one having double
azimuthal waves. Here, the modulated frequency is lower than that seen with the
typical pathway. Evidence of the dynamics in the pathway preceding the typical
pathway and the less typical pathway are shown in figures 6(a,b,d ) and figure 6(c),
respectively. Figure 6(c) shows the stabilization of a higher ωWV F2 than that found
with the typical pathway in figure 6(a,b,d ).

Following the onset of CWV, all ramps have the same pathway and critical
conditions, to WTV and TTV. Starting at the CWV transition, the bifurcations
that occur at high Rei are dominated by the presence of small-scale features. As
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Figure 9. Typical transitions from WVF2 to MWV2 to CWV. The transitions are shown
in a space–time plot (a), temporal frequency–time plot (b) and a spatial wavenumber–time
plot (c), analogous to those in figure 3. Sets of 2D FFT, 1D averaged temporal frequencies,
< |F (ω)| > k , and 1D averaged spatial wavenumbers, < |F (k)| > ω , are shown in (d–f ), (g–i )
and (j–l ) for Rei = 800, 750 and 700, respectively. Figure 9(d–f ) shows an example of CWV,
(g–i ) of MWV2 and (j–l ) of WVF2. All plots are for Reo = 0 and ramp rate of ac . Note that
kA, ‘∗’, ωW3 and ωWV F2 are the spatial wavenumber or temporal frequencies associated with the
axial periodicity, inner cylinder rotation, modulated wave seen in MWV2 and the dominant
azimuthal wave seen in WVF2, respectively.
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energy is dissipated to this scale, the series of bifurcations that transpire have the
large-scale characteristics of the primary series of transitions, but in descending order
(see figure 2). For example, CWV is analogous to the laminar state of MWV. Likewise,
as WVF was defined as a heteroclinic tangle with one dominant azimuthal mode,
here we define WTV as having the same large-scale features as WVF, along with the
addition of chaotic motion within the vortex. WTV occurs at Re∗ ∼ 7.85, where the
temporal frequency associated with WTV becomes dominant (compare figures 10e
and 10g). TTV, a turbulent state with the appearance of vortices, is triggered around
Re∗ ∼ O(10). This state has bulk axisymmetry, as with TVF, with small-scale chaotic
motion occurring within the vortex structure.

The transitions from CWV to WTV to TTV are shown in frequency–time and
wavenumber–time plots in figure 10(a,b). Unlike figures 3–9, figure 10 was obtained
using a non-critical ramp rate of dRe/dt = (8.62)ac. Figures 10(c–d ), 10(e–f ) and
10(g–h) for Rei

∼= 3000, 2000 and 1000, respectively, show an example of TTV (c–d ),
WTV (e–f ) and CWV (g–h). The largest unlabelled peak observed in figure 10(c,e,g)
is a harmonic of the frequency associated with the inner cylinder rotation, denoted
by ‘∗’. In the CWV state, both the temporal frequency that will later dominate WTV
and a modulated frequency (and harmonics) are present. In WTV, only the wavy
frequency ωWV F is clearly dominant, and in TTV, no distinct temporal frequencies are
maintained (except that from the inner cylinder and its harmonic, observable at all
Rei). In figure 10(b, f and h), it can be seen that as the flow transitions from CWV
to WTV, the spatial wavenumber associated with the axial periodicity is clarified and
persists through TTV. While figure 10 reveals the general features of the higher order
flow states, further experiments were performed at varied ramp rates to determine the
critical conditions.

To access WTV and TTV in a reasonable amount of time, a modified ramping
procedure was used. The critical condition defining the onset of the flow state was
measured as a function of dimensionless ramp rate dRe/dt , then extrapolated to
dRe/dτ = ac. Figure 11(a–h) shows temporal frequency–time plots, processed as in
figures 3–7 and 9–10, for a range of ramp rates from 330ac to ac to show the
dependence of the flow transitions on acceleration. To determine the onset and the
decay of the WTV state, the frequency–time plots in figure 11(a–h) were normalized by
the magnitude of the WTV frequency (ωWT V ) at every Rei; subsections of the resulting
plots are shown in figure 11(i–p). The onset of WTV, identified through the growth
of the peak at ωWT V , is less abrupt than other transitions and the critical condition
is estimated as Re∗ ∼ 7.85 (Rei ∼ 1100). The transition to TTV is significantly clearer,
as the ωWTV peak disappears suddenly. The sudden loss of this frequency is evident
by the obvious transition from colour-coded values ∼0.3 to values ∼1.0 (for example,
Rei = 2145 in figure 11o).

The spectral analysis used for the majority of the transition characterization is not
appropriate for very large ramp rates (dRe/dτ > 100ac, figure 11a–c,i–k ), as the trans-
itions occur too quickly in time to resolve clear frequency transitions. Also, the error
associated with establishing a critical Rei grows as dRe/dτ increases because the
subplots used in the FFT analysis cover larger ranges of Rei as the ramp rate increases.
To find the TTV transition for these large ramp rates (5000ac > dRe/dτ > 100ac), we
manually track the movement of the midpoint between vortices in the r–z plane.
As the azimuthal frequency decays, the location of the midpoint between vortices
converges to a single value. Thousands of individual movie frames were analysed in
random order to prevent bias in the results. The transition to TTV was defined when
the midpoint between vortex centres is stationary within the measurement error.
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The onset of TTV for large ramp rates can also be estimated from figure 11
(e.g. figure 13k–o). In figure 12, the critical conditions from the r–z analysis are
included with those obtained from figure 11 and the delay in the critical condition for
TTV with ramp rate is more pronounced. From figure 12, the critical condition for
TTV was determined to be Rei = 2160 (Re∗ = 15.4). The critical condition for the TTV
transition was found not to vary significantly with ramp rate for dRe/dτ < (40)ac.
This suggests that flow states with chaotic motion within the vortices are less sensitive
to the time scale defined for laminar vortices. The decrease in sensitivity may be due
to the change in the characteristic length scale, L, used to define the viscous time
scale, L2/ν. For the laminar vortex states (AZI to MWV2), L should be defined as
the length separating the two moving boundaries, d. For the higher order states, L
may instead be defined by the size of the small-scale features in the flow, ε. This
then decreases the appropriate time scale defining the critical ramping rate to ε2/ν,
resulting in faster quasi-static ramps.

These higher order transitions have been well documented in the literature for a
geometry of η ≈ 0.88 and Γ ≈ 20 (e.g. Fenstermacher et al. 1979; Gorman and
Swinney 1982; Brandstater and Swinney 1987). In general, the pathway consists of
a transition to MWV at Re∗ = 9 or 10, transition to chaotic flow at Re∗ =11 or 12,
loss of modulation at Re∗ ≈ 18 and transition to TTV at Re∗ ≈ 21. These transitions
were also explored with η =0.904, Γ = 20, Re∗ > 9 and a modified ramping protocol,
in a series of papers by Takeda et al. (1992, 1993) and Takeda (1999). The latter
author found the coexistence of modulated and/or wavy modes up to Re∗ =21 as
well as provided a comprehensive list of qualitative transitions in the T-C flow. MWV
is reported by others at Re∗ ∼ 8.5 (Coughlin et al. 1991), with η = 0.876 and Γ = 40,
and at Re∗ ∼ 6.5 (Meincke & Egbers 1999), with η = 8.5, Γ =13.2. Barcilon (1979),
with η = 0.908 and Γ = 65, saw ‘non-unique waves’ starting at Re∗ = 4.1, WTV from
8.5 <Re∗ < 20.5 and TTV at 21 (with unreported ramping conditions). In the present
work, MWV exists in the range of 5.20 <Re∗ < 7.85, CWV at 5.49 <Re∗ < 7.85, WTV
at 7.85 <Re∗ < 15.4 and TTV at Re∗ > 15.4. Based on this literature and the present
results, it appears that with a longer cell and higher radius ratio, MWV and the three
chaotic flow transitions occur at smaller values of Re∗. Interestingly, the stability of
MWV for η = 0.88 and Γ = 20 reported by Fenstermacher et al. (1979), Gorman and
Swinney (1982) and Brandstater and Swinney (1987) covers nearly the same region as
WTV in our geometry of η = 0.912 and Γ =60.7 (Re∗ = 9 to 18 versus 7.85 to 15.4).

Two other notable features are seen in the present work in the higher order
transitions in figure 10. First, we see the appearance and disappearance of two
temporal frequencies at frequencies below ωWT V in the ramp from 1700 < Rei < 1800
(similar in nature to MWV2). Second, after the loss of the WTV dominant frequency,
a less intense lower temporal frequency appears and later disappears in the range of

Figure 10. Transitions from CWV to WTV to TTV with a quick ramp of dRe/dτ = (8.62)ac .
The transitions are shown in a temporal frequency–time plot (a) and a spatial
wavenumber–time plot (b), analogous to those in figure 3. The 1D averaged temporal
frequencies, < |F (ω)| > k , and 1D averaged spatial wavenumbers, < |F (k)| > ω , are shown
in (c–d ), (e–f ) and (g–h) for Rei

∼= 3000, 2000 and 1000, respectively. Figure 10(c–d ) shows
an example of TTV, (e–f ) of WTV and (g–h) of CWV. All plots are for Reo = 0. Note that
kA, ‘∗’, ωM and ωWT V are the spatial wavenumber or temporal frequencies associated with
the axial periodicity, inner cylinder rotation, modulated wave and dominant wave seen in
WTV, respectively. The largest unlabelled peak seen in (c, e, g) is a harmonic of the frequency
associated with the inner cylinder rotation.
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Figure 12. Ramp test used to determine the TTV critical condition. Filled circles are the
transitions found from the FFT characterization (seen in figure 11). Open triangles are found
from tracking the decrease of movement of vortices in the r–z plane. The solid line is at
Re= 2160, (Re∗ = 15.4), which is the critical condition extrapolated for a ramp of ac , based on
the average of values in the range of (dRe/dτ )/ac < 40.

2200 <Rei < 2500. Similar features are seen in other ramps in figure 11. These could
be classified as additional flow states (e.g. MWV3 and WTV2) and the onset of TTV
could be classified as occurring after the WTV2 region. For simplicity, we chose not
to do so, as the loss of the ωWT V is a sharp, well-defined transition, and the intensity
of the post-WTV temporal frequency is relatively weak.

As Rei is further increased, literature tells us that transitions subsequent to TTV can
occur, where another azimuthal wave re-emerges and disappears again (Walden and
Donnelly 1979; Takeda 1999; Wang et al. 2005) and finally featureless, shear-driven
turbulence is observed. Lathrop et al. (1992) found this latter transition, where the
structure of the turbulence changes to that of simple shear-driven open systems. Using
flow visualization, they showed that before the transition, turbulent structures with
coherent axial bands (TTV) were found, but after the transition all coherent structure
was lost (featureless turbulence). Lewis & Swinney (1999) subsequently determined
the same turbulent transition by measuring wave velocity and wall shear stress. For
our system, we did not see evidence of a TTV to featureless turbulence transition
for Rei up to at least 3000 (Re∗ = 21.4); however, access to higher Re∗ may yield
these additional transitions. The transitions and critical conditions we observed in the
present study are included in figures 2 and 8.

4. Conclusions
In this paper, we have focused on higher order transitions in T-C flow with Reo =0.

While a tremendous amount of literature on this problem already exists, we note that
the number of parameters is large, resulting in regions of that parameter space that
are under-characterized or completely unexplored. For example, Rec(η, Reo) or even
Rec(η) for transitions beyond the primary or secondary instability or quantitative
transition characterization for post-chaotic transitions as a function of radius ratio
are not available. Ultimately, the knowledge of the Newtonian critical conditions for
higher order transitions as a function of geometry is essential for studies of tertiary
variables in the T-C geometry. Here, we have summarized results, geometries and
protocols from other authors and presented a complete catalogue of new experimental
results that address some of the gaps in this parameter space. We used carefully
chosen and well-defined ramping protocols, along with flow visualization with a
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spectral characterization technique that illuminates dynamic transition pathways, and
found previously unreported flow states. We found that for our high aspect ratio,
narrow gap geometry, the cascade of transitions for Newtonian fluids for Reo = 0 is
well described by AZI ⇒ TVF ⇒ WVF ⇔ MWV ⇒ CWV ⇒ WTV ⇒ TTV.

The highly resolved temporal and spatial frequency characterization technique used,
similar to that of Takeda (1999) for Re∗ > 7, has not been previously applied to the
early transitions (sub-chaotic flows). Here, it has yielded unique quantification of the
dynamics of the frequency cascade through such states as the novel early-modulated
waves, the oscillations between single temporal and multiple temporal modes and
the onset of chaotic flow states. We found a stabilized early-modulated wavy flow
state, where the region of MWV stability was independent of ramp rate (for ramps
from 0.26ac < dRe/dτ < 4.31ac). The experiments also showed that the early MWV
crosses from the counter- into the co-rotation regime, where the range of stability
decreases and a third sub-chaotic WVF emerges with increased Reo. For Reo = 0, a
second WVF (WVF2) is stabilized from Re∗ =3.56 ± 0.14 to Re∗ = 5.20 ± 0.04, after
which another MWV (MWV2) region forms. The range of stability of MWV2 with no
background chaos is significantly smaller than that seen in the literature for smaller
radius ratios and lower aspect ratios.

Finally, we presented the characterization of post-chaotic flows as a function of
ramp rate. The characterization technique allowed for the tracking of relative mode
intensities as a function of Rei , which leads to an observation of formation and decay
of dominant modes. We defined the region of stability of WTV by tracking the onset
of a dominant temporal frequency, and the transition to TTV, characterized by the
loss of that frequency. While ramp rates of dRe/dτ > 40ac delay the onset of TTV,
it was found that the critical condition for TTV does not change for dRe/dτ < 40ac,
likely due to the change in the dominant characteristic length scale. Similar to the
situation for MWV2, we see earlier transitions than those reported in the literature
for smaller η and Γ for CWV at Re∗ = 5.49 ± 0.05, WTV at Re∗ ∼ 7.85 and TTV at
Re∗ = 15.4.

Researchers interested in studies of tertiary parameters such as fluid elasticity or
cylinder eccentricity on a range of flow types will benefit from the increased library
of characterization offered here. Experiments to extend these studies to complex
polymeric fluids, for which the present results will serve as important benchmarks,
are now underway.
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